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The case of smooth manifolds

Let E — M be a vector bundle over a smooth manifold M,
V a connection on E.

v :[a,b] = M a curve in M

Ty E

+(a) = Ey(p) the parallel transport along v

3 _ _ -1
X € M, Tpe, =1dE,, Tyap = Ty 0 Ty, -1 = (79) L.
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The holonomy group at the point x:
Hol, (V) = {Tﬂ,”y is a loop at x} C GL(Ex) ~ GL(m,R).
The restricted holonomy group at the point x:
Hol(V) := {7'7‘7 is a loop at x,y ~ pt,} C Hol,(V).

Fact: Hol, (V) C GL(E,) is a Lie subgroup,
Hol%(V) is the identity component of Hol, (V).

The holonomy algebra at the point x:

hol (V) := LA Hol,(V) = LA Hol%(V) C gl(Ex) ~ gl(m, R).
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Theorem. (Ambrose, Singer, 1952)

hoL, (V) = {(7) 7 'oR, (6) (7 (X), 75(Y))ors|7(a) = x, X, Y € TLM}.
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The fundamental principle:

{ parallel sections X € [(E)} «— {Xx € Ex| Hol, Xy = X}

(X € T(E) is parallel if VX =0, or for any v : [a, b] = M,
TgammaX,(a) = Xy())
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Holonomy of Riemannian manifolds
(M,g), E=TM, V=V Hol(V)c O(n), hol(V) C so(n)

Consider two Riemannian manifolds (M, g), (N, h), then
(M x N, g+ h) is also a Riemannian manifold and

Hol(M x N) = Hol(M) x Hol(N).

Conversely:
Theorem (De Rham) If (M, g) is complete and simply connected,
then
M= Ny x Ny x -+ x N,,
Hol(M) = {id} x Hol(Ny) x - - - x Hol(N,),
Hol(N;) are irreducible.
In general exists local decomposition of (M, g).
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If (M, g) is an indecomposable simply connected symmetric
Riemannian space, then

M= G/H,
where G is the group of transvections,
then Hol coincides with the isotropy representation of H.

Simply connected symmetric Riemannian spaces are classified,
hence all possible Hol are known.
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Connected irreducible holonomy groups of non-locally symmetric
Riemannian manifolds (M. Berger 1953):

s0(n. 0(3).50(2) 50(2)- 59 (2) 50

Spin(7) C SO(8), G» C SO(7).
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Special geometries:
SO(n): "general” Riemannian manifolds;
U(35): Kahlerian manifolds;
SU(%): Calabi-Yau manifolds or special Kahlerian manifolds,

’ Ric = 0, parallel spinors;
Sp(7): hyper-Kahlerian manifolds, Ric = 0, parallel spinors;
Sp(7) - Sp(1): quaternionic-Kahlerian manifolds, Einstein;
Spin(7): 8-dimensional manifolds with a parallel 4-form,
Ric = 0, parallel spinors;
Gy: 7-dimensional manifolds with a parallel 3-form,
Ric = 0, parallel spinors.
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Supermanifolds

Let &£ be a locally free sheaf of supermodules over O, of rank plgq.
x € M consider the fiber at x: &, := E(U)/(Om(U))xE(V),

where x € U and (Op(U))x € Oaq(U) are functions vanishing
at x.

For X € £(U) consider the value X, € &
Example. £ = Ty = (Tm)x = TeM and (TeM)g = TeM
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Let £ be a locally free sheaf of supermodules over O, of rank plgq.
Consider the vector bundle E = UycyEx — M.

We get the projection ~: E(U) = (U, E), X — X, X=X,
Let (ea) A=1,...,p+ g be a basis of £(U)

X e E(U) = X = XPes (XA € Opm(U)) = X = XA84

X € E(U) is not defined by its values!
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Connection on & : V:TmerE—E |VeX| = €]+ [X],
VieX = fVeX and  VefX = (€)X + (—1)EIFlFvex
Locally: Vy,eg = F?BeA, I_’;‘B € Om(U)

V= (Vircrmyere))™ : T(TM) @ T(E) — T'(E) is a connection
on E

I:f,‘g are Cristoffel symbols of \V/

v:[a,b] CR— M 7, : E,, — E,@) the parallel displac.
along ~ (defined by V).

Ty + Ey(a) = &;(b) is an isomorphism of vector superspaces.

Anton Galaev Holonomy of supermanifolds



Problem: Define holonomy of V (it must give information about
all parallel sections of £!)
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Parallel sections
X € E(M) is called parallel if VX =0
VX=0=VX=0 (<!l

Locally:
OXA+ XBra =0
VX =0« iB )
{OWXAJF(—U'XB'XBFQ‘B —0
(8y, .05, (DX + XBT )~ =0, (%) -
@{(6 .04, (04 XA 4+ (- 1)|XB\XBFA N =0 (x%) r=0,...m

VX =0 XA+ KA =0
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Proposition. A parallel section X € £(M) is uniquely defined by
its value at any point x € M.

Proof. VX =0 = @5{: 0; )N(X = Xx uniquely determine )N(, i.e.
we know the functions X*.
Further, use (sx): X' = —XBF%,

XwAw = _)?Br;‘Bw + ngfy‘B ... = we know the functions X4. O
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Definition (holonomy algebra)

hol(V)y :=

r>0,Y,Z,Y;, e T,M
V: connect on Ty

<T;1 o ?fymyl R,(Y,Z)or, > C gl(&x)

Note: hol(V), C (hol(V)x)g  (#!)
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Lie supergroup G = (G, Og) is a group object in the category of
supermanifolds; G is uniquely given by the Harish-Chandra pair
(G,g), where g = g5 @ g7 is a Lie superalgebra, g is the Lie
algebra of G.

Denote by Hol(V)? the connected Lie subgroup of
GL((Ex)g) x GL((Ex)z) corresponding to
(hol(V)x)s C al((Ex)a) @ al((Ex)1) C gl(Ex):

Hol(V)x := Hol(V)? - Hol(V)x C GL((£x)5) x GL((Ex)1)-
Def. Holonomy group: Hol(V)x := (Hol(V)x, hol(V)x);
the restricted holonomy group: Hol(V)? := (Hol(V)?, hol(V)).
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Definition (Infinitesimal holonomy algebra).

ho[ﬁV);”f =
<V W RA(Y,2)r>0, Y, Z, Y1, .., Yy € TeM >C hol(V),

Theorem. If M, € and V are analytic, then hol(V), = hol(V),

X
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Theorem.

{X € &M), VX =0} +— {Xx € & annihilated by ho[(V)X}

and preserved by Hol(@)x

Proof. —: VX=0 = Vi | R(Y,Z)X=0

VX=0 = VX=0 = Xis preserved by Hol(V)x
— Vi, v R(Y,Z)orXc=0 = X, is annihilated by
hol(V)x
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—

Hol(?)x preserves Xy € &y

— 3Xy € T(E), VXo =0, (Xo)x = Xx

Xo = X§'éa, X§' € Om(U)

(+*) defines X2 e On(U) forally <m < -+ <7,

VYL
0<r<m-1.
We get XA € O (U), consider X = X%es € E(V).
Claim: VX =0. To prove (by induction over r):

XA satisfy () and (xx) forall vy < --- <7, 0<r<m

~ B ~
(D1 Oy (DX XET))™ = (05,0, ((-1) AHEICIRE X E)
B — ~
= (O O (-)AHEDXTIG L, RE. X))

Bl ar— ~
== ((_1)(|A‘HB|)|X lvvr,}.,v2Ré71iXB) =0,

this proves (x)
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Linear connections

V a connection on £ = Ty,

E=UepmTyM=TM, E=TM

hol(V) C gl(n|m,R),  Hol(V) C GL(n,R) x GL(m,R)
Theorem.

{ Parallel tensor fields } {AX € T£9M annihilated by bo[(V)X}

of type (p, g) on M and preserved by Hol(V)y
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Examples of parallel structures on (M, V)

J of Ty with J2 = —id

superalgebra)

parallel structure on M hol(V) is Hol(V) is

contained in contained in
complex structure gl(k|/,C) GL(k,C) x GL(/,C)
odd complex structure, q(n,R) {(5%)]A€ GL(n,R)}
i.e. odd automorphism (queer Lie

Riemannian supermetric,
i.e. even non-degenerate
supersymmetric metric

Oﬁp(p()v q0’2k)

O(po, qo) x Sp(2k,R)

even non-degenerate
super skew-symmetr. metric

0sp™>(2k|p, q)

Sp(2k,R) x O(p, q)

odd non-degenerate
supersymmetric metric

pe(n,R)
(periplectic Lie
superalgebra)

{(54)A€GL(nR)}

odd non-degenerate super
skew-symmetric metric

pes*(n,R)

{(54)A€GL(nR)}
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Riemannian supermanifolds

(M, g), where
g:TMm R0, Tm — Opm

is a symmetric even nondegenerate

g defines a pseudo-Riemannian metric g (of signature (p, q)) on
M.

On (M, g) exists a unique Levi-Civita connection V

hol(M, g) C osp(p, q[2k) and Hol(V) C O(p, q) x Sp(2k, R)

Anton Galaev Holonomy of supermanifolds



Special geometries of Riemannian supermanifolds and the
corresponding holonomies

type of (M, g) hol(M, g) is
contained in
Kahlerian u(po, qolp1, q1) n=2po + 2qo,
m=2p; +2q
special Kahlerian su(po, golp1, q1) n=2pgy + 2qo,
(by def.) m=2p; +2q1
hyper-Kahlerian hosp(po, golp1, q1) n = 4po + 4qo,
m=4p; +4q:
quaternionic- sp(1) @ hosp(po, qolp1, q1) | n=4po + 4qo0 > 8,
Kahlerian m=4p; + 4q;
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Ric(Y, Z) = str (X — (-1)XIIZIR(Y, X)Z),

str(’é B) =trA—trD

Proposition. Let (M, g) be a K&hlerian supermanifold, then

Ric = 0 if and only if hol(M, g) C su(po, qo|p1,g1). In particular,
if (M, g) is special Kahlerian, then Ric = 0; if M is simply

connected, (M, g) is Kahlerian and Ric = 0, then (M, g) is
special Kahlerian.
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A generalization of the Wu theorem

the product M x N = (M x N, Opnxn):

Let (U,xY,...,x" &Y ...6M) and (V,y!, ..., yP. 0, ..., n9) be
coordinate systems on M and N

by definition, Opgxn/(U x V) := Opxn(U X V)@ N1 em 1 a

a supersubalgebra g C osp(po, qo|2k) is weakly-irreducible if it
does not preserve any non-degenerate vector supersubspace of
RPo+do I'I(R2k).
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Theorem. Let (M, g) be a Riemannian supermanifold such that
the pseudo-Riemannian manifold (M, g) is simply connected and
geodesically complete. Then there exist Riemannian
supermanifolds

(Mo, &), (M1, 81), ..., (M., g) such that

(M,g)=(Mogx My XXM, go+g+ -+g), (1)

the supermanifold (Mo, go) is flat and the holonomy algebras of
the supermanifolds (M, g1),...,(M,, g) are weakly-irreducible. In
particular,

hol(M, g) = hol(M1,81) & --- ® hol(M,, g;).

For general (M, g) decomposition (1) holds locally.
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Problem: Classify possible irreducible holonomy algebras of
Riemannian supermanifolds

g C osp(p, q|2m)
The space of algebraic curvature tensors of type g:

R(X,Y)Z + (—1)XIIYHIZDR(Y, Z)X]
R(g) = Re NA(RPIPM)* @ g|  +(-1)ZIIXHIYDR(Z, X)Y =0
for all homogeneous X, Y, Z € RP:4I2m
g C osp(p, q|2m) is a Berger superalgebra if
span{R(X, Y)|R € R(g), X,Y e RP92m} — ¢

Proposition. Let M be a Riemannian supermanifold. Then its
holonomy algebra hol(V) C osp(p, g|2m) is a Berger superalgebra.
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Classification of irreducible non-symmetric Berger
superalgebras g C osp(p, g|2m):

osp(p, q|2m), osp(r|2k, C),
u(POaQO’PbCIl), 5u(PO>QO‘PlaCIl)a
bosp(r, s|k), hosp(r, s|k) ® sp(1),

0spk(2k|r,s) @ sl(2,R), ospk(2k|r) @ sl(2,C).
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